--[1]-- Introduction

I’m not writing this to brag about what an 31337 h4x0r I am or how long it took to Own Gamma. I’m writing this to demystify hacking and show how simple it is, and to hopefully inform and inspire you to go out and get your hands dirty. If you have no experience with programming or hacking, some of the text below might look like a foreign language. Check the resources section at theanarchistlibrary.org to get started. And trust me, once you’ve learned the basics you’ll realize this really is easier than filing a FOIA request.
--[2]-- Staying Safe

This is illegal, so you’ll need to take some basic precautions:

1) Make a hidden encrypted volume with Truecrypt 7.1a [0]
2) Inside the encrypted volume install Whonix [1]
3) (Optional) While just having everything go over Tor probably sufficient, it’s better to not use an internet to your name or address. A cantenna, aircrack, and reaver here.

[0] https://truecrypt.ch/downloads/

As long as you follow common sense like never do anything hacking related outside of Whonix, never do any of your normal computer usage inside Whonix, never mention any information about your real life when talking with other hackers, and never brag about your illegal hacking exploits life, then you can pretty much do whatever you want with no fear of being v&.

NOTE: I do NOT recommend actually hacking directly over Tor for some things like web browsing, when it comes to using h nmap, sqlmap, and nikto that are making thousands of requests very slowly over Tor. Not to mention that you’ll want a public IP address to receive connect back shells. I recommend using servers you’ve paid with bitcoin to hack from. That way only the low bandwidth between you and the server is over Tor. All the commands you have a nice fast connection to your target.

--[3]-- Mapping out the target

Basically I just repeatedly use fierce [0], whois lookups c domain names, and reverse whois lookups to find all IP address names associated with an organization.
For an example let’s take Blackwater. We start out knowing their homepage is at academi.com. Running fierce.pl -dns academi.com we find the subdomains:

67.238.84.228 email.academi.com
67.238.84.242 extranet.academi.com
67.238.84.240 mail.academi.com
67.238.84.230 secure.academi.com
67.238.84.227 vault.academi.com
54.243.51.249 www.academi.com

Now we do whois lookups and find the homepage of www.academi.com is hosted on Amazon Web Service, while the other IPs are in the range:

NetRange: 67.238.84.224 - 67.238.84.255
CIDR: 67.238.84.224/27
CustName: Blackwater USA
Address: 850 Puddin Ridge Rd

Doing a whois lookup on academi.com reveals it’s also registered to the same address, so we’ll use that as a string to search with for the reverse whois lookups. As far as I know all the actual reverse whois lookups cost money, so I just cheat with google:

"850 Puddin Ridge Rd” inurl:ip-address-lookup
"850 Puddin Ridge Rd” inurl:domaintools

Now run fierce.pl -range on the IP ranges you find to lookup more:

fierce.pl -dns on the domain names to find subdomains and IPs. Do more whois lookups and repeat the process until you’ve found everything.

Also just google the organization and browse around its websites. For example on academi.com we find links to a careers portal, an online store, and an employee resources page, so now we have some more:

54.236.143.203 careers.academi.com
67.132.195.12 academiproshop.com
67.238.84.236 te.academi.com
If you repeat the whois lookups and such you’ll find academiproshop.com seems to not be hosted or maintained by Blackwater, so scratch that interesting IPs/domains.

In the case of FinFisher what led me to the vulnerable finsupport.finfisher.com was simply a whois lookup of finfisher.com which found it registered to the name "FinFisher GmbH". Googling for: 'FinFisher GmbH' inurl:domaintools finds gamma-international.de, which redirects to finsupport.

...so now you’ve got some idea how I map out a target. This is actually one of the most important parts, as the larger the attack surface that you are able to map out, the easier it will be to find a hole somewhere in it.

--[4]-- Scanning & Exploiting

Scan all the IP ranges you found with nmap to find all services running. Aside from a standard port scan, scanning for SNMP is underrated.

Now for each service you find running:

1) Is it exposing something it shouldn’t? Sometimes companies running that require no authentication and just assume it’s or IP to access it isn’t public. Maybe fierce found a git subdomain and you can go to git.companyname.come/gitweb/ and browse their source.

2) Is it horribly misconfigured? Maybe they have an ftp server with anonymous read or write access to an important directory. A database server with a blank admin password (lol stratfor). Devices (VOIP boxes, IP Cameras, routers etc) are using the default password.
Aside from the hacking specific stuff almost anything useful to a system administrator for setting up and administering networks will also be useful for exploring them. This includes familiarity with the windows command prompt and unix shell, basic scripting skills, knowledge of ldap, kerberos, networking, etc.

You’ll notice some of this sounds exactly like what Gamma is doing. Hacking is a tool. It’s not selling hacking tools that makes Gamma evil. It’s who their customers are targeting and with what purpose that makes them evil. That’s not to say that tools are inherently neutral. Hacking is an offensive tool. In the same way that guerrilla warfare makes it harder to occupy a country, whenever it’s cheaper to attack than to defend it’s harder to maintain authority and inequality. So I wrote this to try to make hacking easier and more accessible. And I wanted to show that the Gamma Group hack really was nothing fancy, just standard sqli, and that you do have the ability to go out and take similar action.

Solidarity to everyone in Gaza, Israeli conscientious-objecters, Manning, Jeremy Hammond, Peter Sunde, anakata, and all other imprisoned hackers, dissidents, and criminals!

---[10]--- Outro

3) Is it running an old version of software vulnerable to a public exploit?

Webservers deserve their own category. For any webservers, I usually:

1) Browse them. Especially on subdomains that fierce finds for public viewing like test.company.com or dev.company.com you’ll often find interesting stuff just by looking at them.

2) Run nikto [0]. This will check for things like webserver/.svn/, webserver/backup/, webserver/phpinfo.php, and a few thousand other common mistakes and misconfigurations.

3) Identify what software is being used on the website. Whatweb is useful [1].

4) Depending on what software the website is running, use more specific tools like wpscan [2], CMS-Explorer [3], and Joomscan [4].

First try that against all services to see if any have a misconfiguration, publicly known vulnerability, or other easy way in. If not, it’s time to move on to finding a new vulnerability:

5) Custom coded web apps are more fertile ground for bugs than large projects, so try those first. I use ZAP [5], and some combination of its automated tests along with manually poking around with the help of its intercepting proxy.

6) For the non-custom software they’re running, get a copy. If it’s free software you can just download it. If it’s proprietary you can pirate it. If it’s proprietary and obscure enough that you can’t buy it (lame) or find other sites running the same software, find one that’s easier to hack, and get a copy from them.

[0] http://www.cirt.net/nikto2
For finsupport.finfisher.com the process was:

* Start nikto running in the background.

* Visit the website. See nothing but a login page. Quickly check for sqli in the login form.

* See if WhatWeb knows anything about what software the site is running.

WhatWeb doesn’t recognize it, so the next question I want answered is if this is a custom website by Gamma, or if there are other websites using the same software.

* I view the page source to find a URL I can search on (ind exactly unique to this software). I pick Scripts/scripts.js.php, and google: allinurl:"Scripts/scripts.js.php"

* I find there’s a handful of other sites using the same software, all coded by the same small webdesign firm. It looks like each site is custom coded but they share a lot of code. So I hack a couple of them to get a collection of code written by the webdesign firm.

At this point I can see the news stories that journalists will write to drum up views: “In a sophisticated, multi-step attack, hackers f web design firm in order to acquire confidential data that attacking Gamma Group…”

But it’s really quite easy, done almost on autopilot once y it. It took all of a couple minutes to:

Books:

* The Web Application Hacker’s Handbook
* Hacking: The Art of Exploitation
* The Database Hacker’s Handbook
6) Use the C&C server to uninstall FinFisher on all targets.

7) Join the former C&C servers into a botnet to DDoS Gamma.

It was only after failing to fully hack Gamma and ending up with some interesting documents but no copy of the FinSpy server soft make due with the far less lulzy backup plan of leaking the mocking them on twitter.

Point your GPUs at FinSpy-PC+Mobile-2012-07-12-Final.zip already so I can move on to step 2!

--[8]-- Other Methods

The general method I outlined above of scan, find vulnerabilities, and exploit is just one way to hack, probably better suited to those wi programming. There’s no one right way, and any method that any other. The other main ways that I’ll state without going

1) Exploits in web browers, java, flash, or microsoft offic emailing employees with a convincing message to get them to attachment, or hacking a web site frequented by the employe browser/java/flash exploit to that.

This is the method used by most of the government hacking g need to be a government with millions to spend on Oday rese to FinSploit or VUPEN to pull it off. You can get a quality for a couple thousand, and rent access to one for much less metasploit browser autopwn, but you’ll probably have better exploits and a fake flash updater prompt.

2) Taking advantage of the fact that people are nice, trust of the time.

The infosec industry invented a term to make this sound lik science: 'Social Engineering’. This is probably the way to too much about computers, and it really is all it takes to hacker [0].

* google allinurl:"Scripts/scripts.js.php" and find the other
* Notice they’re all sql injectable in the first url parameter
* Realize they’re running Apache ModSecurity so I need to use the option --tamper=’tamper/modsecurityversioned.py’
* Acquire the admin login information, login and upload a php file check for allowable file extensions was done client side to download the website’s source code.

[0] http://sqlmap.org/
[1] https://epinna.github.io/Weevely/

Looking through the source code they might as well have named Web App v2 [0]. It’s got sql, LFI, file upload checks done javascript, and if you’re unauthenticated the login page just sends the login page with a Location header, but you can have you filter the Location header out and access it just fine.

[0] http://www.dvwa.co.uk/

Heading back over to the finsupport site, the admin /BackOf 403 Forbidden, and I’m having some issues with the LFI, so sql (it’s nice to have a dozen options to choose from). The web designer all had an injectable print.php, so some quick https://finsupport.finfisher.com/GGI/Home/print.php?id=1 and https://finsupport.finfisher.com/GGI/Home/print.php?id=1 and reveal that finsupport also has print.php and it is injectable database admin! For MySQL this means you can read and write the site has magicquotes enabled, so I can’t use INTO OUTFILE. But I can use a short script that uses sqlmap --file-read to get a URL, and a normal web request to get the HTML, and then included or required in the php source, and finds php files...
to recursively download the source to the whole site.

Looking through the source, I see customers can attach a file to their support tickets, and there's no check on the file extension. So I pick a username and password out of the customer database, create a support request with a PHP shell attached, and I'm in!

--[5]-- (fail at) Escalating

< got r00t? >

\ ^__^
 \ (oo)_______
 (__)
)/\`
 ||----w |
 || ||
 ^^^^^^^^^^^^^^^^^

Root over 50% of Linux servers you encounter in the wild with two easy scripts, Linux_Exploit_Suggester [0], and unix-privesc-check [1].

[0] https://github.com/PenturaLabs/Linux_Exploit_Suggester
[1] https://code.google.com/p/unix-privesc-check/

finsupport was running the latest version of Debian with no root exploits, but unix-privesc-check returned:
WARNING: /etc/cron.hourly/mgmtlicensestatus is run by cron.
www-data can write to /etc/cron.hourly/mgmtlicensestatus
WARNING: /etc/cron.hourly/webalizer is run by cron as root.
www-data can write to /etc/cron.hourly/webalizer

so I add to /etc/cron.hourly/webalizer:
chown root:root /path/to/my_setuid_shell
chmod 04755 /path/to/my_setuid_shell

wait an hour, andnothing. Turns out that while the cron process is running it doesn't seem to be actually running cron jobs. Looking in /etc/cron.hourly/management_status shows it didn't update the previous month. Re-running the timezone cron will sometimes run at the wrong time, and you need to restart cron after changing the timezone. ls -l /etc/localtime shows the timezone got updated June 6, the same time finsupport stopped recording stats, so that's probably the issue. At any rate, this server does host the website, so I already have access to everything interesting on it. Root wouldn't get much of anything new, so I move on to the rest of the network.

--[6]-- Pivoting

The next step is to look around the local network of the box you hacked. This is pretty much the same as the first Scanning & Exploiting step, except that from behind the firewall many more interesting services will be exposed. A tarball containing a statically linked copy of Nmap and all the scripts you can upload and run on any box is very useful for this. The various nfs-* and especially smb-* scripts Nmap has will be extremely useful.

The only interesting thing I could get on finsupport's local network was another webserver serving up a folder called 'qateam1' containing their mobile malware.

--[7]-- Have Fun

Once you're in their networks, the real fun starts. Just use your imagination. While I titled this a guide for wannabe whistleblowers, there's no reason to limit yourself to leaking documents. My original plan was to:
1) Hack Gamma and obtain a copy of the FinSpy server software.
2) Find vulnerabilities in FinSpy server.
3) Scan the internet for, and hack, all FinSpy C&C servers.
4) Identify the groups running them.
5) Use the C&C server to upload and run a program on all targets telling them who was spying on them.