
The Anarchist Library
Anti-Copyright

Gnuxie Lulamoon and Hayley Patton
The Poverty of Post-Open Source

September 4, 2021

Retrieved on September 10, 2021 from https://applied-langua.ge/
posts/the-poverty-of-post-open-source.html

theanarchistlibrary.org

The Poverty of Post-Open
Source

Gnuxie Lulamoon and Hayley Patton

September 4, 2021

Contents

The user is always an idiot 5
The programmer better be made an idiot 7

What’s the deal? . 9
Legalese or a liberatory program? 11
What did we learn from the old free software? 13
What is egoist telekommunism? 16

3

cessity of a distinction between producer and consumer (A Paras-
tatal Problem, “Ethical software” and this article), that computing
must necessarily be hard (Terminal Boredom and this article), and
that rigid “communities” are a good representation of associations
(CWTAE and this article).

Some people have figured out their own critiques of some of
these ideas, but still fall short and fool themselves with the oth-
ers; and some people only handle instances of these ideas and not
the ideas themselves, leading to an inconsistent view; for example,
one might correctly dismiss a concept of proprietary “cooperative”
software, but still support the production of more isolated commu-
nities on so-called “social” networks.

One is foolish to merely blame their problems on capitalism, es-
pecially when their idea of “anarchism”, or “anti-capitalism”, or
whatever else they hold dearly, reproduces the same logic and op-
pressive practices. There is no concrete “existential threat” to peer
production, there are merely false principles, and any exhibition of
such principles is no less terrifying than any other. The notion of
“post-open source” as we now know of it, much like how we have
said before, was dead on arrival.

17

groups have succeeded more than others in preventing the corpo-
rate recuperation of their domains.

In order to avoid such edge and nearly political endeavours,
someone had the wise idea of inventing an “open source” move-
ment which reduced the emphasis on a software commons. While
the post-open source “movement” has added in its own political
endeavours, which appear radical at face value, the anti-commons
sentiment remains.

What is egoist telekommunism?

We consider egoist telekommunism to be two things:
It is an abstract free software, but groups like the Free Software

Foundation despise it, as we find commercial involvement in the
commons to be highly dubious. (Of course, the FSF is bad atmaking
decisions generally, such as when they opposed the disallowment
of using software in organisations which can’t even follow local
labour laws.)

It is also a synthesis of egotistical reasons to want things, and
telekommunist ways to get things. An individual who wants to
do “producer” things would appreciate being able to reuse public
resources, and that like-minded individuals provide their own im-
provements; and an individual who wants to do “consumer” things
would find it more empowering to tweak their software themself,
rather than have to find the perfect developer who has exactly their
interests in mind.

Our notion of egoism coincides nicely with telekommunist
ideas. For example, the telekommunist rightfully critiques a con-
crete form, critiquing cooperatives as exploitive and bureaucratic,
and similarly the egoist critiques its general shape, as an insular
community wherein its participants cannot fulfil themselves.

With such a focus on general principles, it is easy to see that our
prior writings attacked the same general ideas, specifically, the ne-

16

One thing which has bothered us is that there seem to be similar
themes in prior writeups – in a way, it appears that writings like
Terminal boredom, Ethical software is a sad joke, Careful with that
axe, Eugen and A Parastatal Problem approach symptoms of the
same cause. So it is natural, in a way, that we want to tie the loose
ends between them.

Much like the phantasm of The Far Left which scares the life out
of the average conservative, the idea of a unified “ethical software”
or “cooperative software” movement is completely imaginary. In a
prior article, we contrasted our own ethics to “vulgar ethical soft-
ware”. Noting that proponents of this vulgarity often claim inspi-
ration from an article entitled Post-Open Source, we now consider
vulgar ethical software to more accurately be the lineage of this
article; as they don’t even call their ideas “ethical” to start with.

The only actual similarity between our theory, which we half-
jokingly call egoist telekommunism, and the lineage of this post-
open source is that the authors of the original texts of telekommu-
nism and post-open source both like Karl Marx. So, the purpose of
this article is to discuss what isn’t similar, and why we think the
telekommunist approach is much better.

The user is always an idiot

A general theme in post-open source is it assumes the same di-
chotomies and distinctions between producer and consumer, or be-
tween programmer and user, from a capitalist frame of view. From
the start of Post-Open Source:

but those freedoms don’t actually mean shit to the av-
erage end user. only programmers care if they have
access to the source code, and most people aren’t pro-
grammers. and i am a programmer, and i don’t give
a shit. the freedom to not think about my operating

5

system and just get work done overrules all of those
for me, so i use windows.

There are a few misplaced assumptions made. The easiest to re-
fute is that all programmers are the same — if the author doesn’t
need the sources for something, neither should you. While there
are few people who, say, need source code for their operating sys-
tem, the small number of those people should not suggest that the
sources are in fact useless. A builder usually would not find much
use out of a sawmill, even if the job of the builder is to “cut things
into shape”. While such tools are probably irrelevant to a builder
and application programmer, they would both be unable to do any-
thing if someone didn’t have the tools.

The most concerning assumption made is that most people will
never program, so access to source materials is unimportant. It is
difficult these days to genuinely argue that people should consider
learning to program; in part because there is higher demand for
programmers, as well as engineers, scientists, and generally all that
sort of industry, as more industries make use of automation and
more software, and so all calls to “learn to code” seem to come
from industry demands.

But there are reasons to program which we would consider
purely selfish. One reason, as outlined in Terminal Boredom and
possibly originated in Goldberg and Kay’s Personal Dynamic
Media, is that the computer allows for the creation of methods
of self-expression (i.e. meta-media). If we are to believe the idea
of “linguistic relativity”, then meta-media makes it possible to
indulge in new modes of thought, which would be very powerful.

If not, we can at least make modes of thought that we already
know a lot easier to engage in. Where a computer connected to
some machinery can (partly or wholly) automate boring manual
labour, a computer by itself similarly automates thinking labour.
Minsky discusses the idea in Why programming is a good medium
for expressing poorly understood and sloppily-formulated ideas,

6

The empowerment of “consumers” also provides for better qual-
ity software. Using our previous principle that a creative spirit
tends to be impatient, it may be better for one to fix deficiencies in
software, rather than file a request to have it fixed by someone else.
Again, if people wrote better code, the effort to modify it would
also be reduced. The Fuzz Revisited paper seems to support this
hypothesis; the commercial Unixen tended to be more bug-prone
than the equivalent GNU and Linux software, and the latter two
could be fixed by anyone who found a bug.

But a usual retort would be that the people who fix software
when they find bugs are still programmers, and not ordinary peo-
ple — this couldn’t work with anyone who isn’t a programmer. So
do people tend to write good code? There may seemingly be some
effort involved in writing good code, but it is far from wasted. As
Robert Strandh notes on “continuous improvement”, careful ap-
plication of efficiency-improving techniques means “[he is] able
to use more time eating, sleeping, and relaxing.” And the “great
virtues of a programmer”, at least according to Larry Wall and
friends, of laziness, impatience and hubris are merely part of an
egoistic affair. So it is not unlikely that, if someone had any egois-
tic motivation to program, they could be a great programmer.

Another interesting property of the old free software was a sort
of edginess performed by the individuals associated with it. The
stereotype of a hacker cussing out Microsoft under every breath
is unfortunately the best manifestation of such edge; the hacker
perhaps has a vague idea of what corporates have done to mess
with the possibility of a software commons, but hasn’t put a name
to it, and is basically conditioned to never use their observations
to produce any anarchic concepts.

We can’t help but ponder what similarities exist between, say,
that hacker remaining cautious of the new Microsoft and its “Mi-
crosoft <3 Linux” campaign, and the queer anarchist reminding
their friends that the new gay politician is not the end all in queer
liberation. Of course, there could be nothing similar at all, but both

15

one heart finds another, as their two hearts unite ego-
istically to delight (enjoy) each other, and how no one
“comes up short” in this. Perhaps he meets a few good
friends on the street and they ask him to accompany
them to a tavern for wine; does he go along as a fa-
vor to them, or does he “unite” with them because it
promises pleasure? Should they thank him heartily for
the “sacrifice,” or do they know that all together they
form an “egoistic union” for a little while?

With these properties in mind, it does not seem far out to call
the associations made “unions of egoists” or “affinity groups”.

Earlier we had promised to investigate the statement “The avail-
ability of source code is less important than the organization of
software labor”, and we are in a position to do that now: what we
find out is that the published source materials are effectively the
means of “organisation” in themselves. Any more organisation is
plainly unnecessary, and trying to separate the two purposes of
source materials, as they are used today, results in utterly absurd
reasoning.

Is such (lack of) organisation “efficient”? Is it even “sustainable”?
Onemay as well ask where the “communist countries” are, or some
boring crap like that. But we can give some general ideas. Good
programs generally are the product of dogfooding — the producer
also consumes their own software, and can directly judge it and fig-
ure out what needs to improve. For example, someone who draws
would have an immediate idea of whether the drawing program
they made is any good or not, but a programmer merely contracted
to make a drawing program might only check off a list of require-
ments, and the programmer is at thewhim of the people involved in
making requirements to produce relevant requirements. So some-
one who “gets” their domain is going to have a better chance of
success than someonewho doesn’t get it; a self-interested program-
mer is the most efficient at writing software they want to write.

14

mostly relating to symbolic AI problems, and Iverson and Lamport
attack mathematical proofs in Notation as a Tool of Thought and
How to Write a 21st Century Proof respectively.

The “merely” mathematical domain of these articles does not in-
duce much confidence that computing is useful for the creative
spirit, but it can be explained by the observation that, generally,
computers have been either inaccessible due to their scarcity, and
have only been used for profitable purposes, or most people who
have access to computers have not considered programming them,
and so haven’t written about more interesting uses. The assump-
tion that programming is boring can only help itself: someone who
believes this as an essential trait can only ever create a culture of
boring programming.

Instead, what the assumption results in is a reaction towards
a “human scale” of computing. But this ends up in a waste of re-
sources and time; a computer is used to assist with reasoning about
things, which provides the user with a means for more agency
and subjectivity, but the computer is only used for mundane tasks
which the authors of the software believe is only what the user can
handle. In other words, despite the assistance provided by the com-
puter, this line of thinking ends up assuming the user is always an
idiot.

The programmer better be made an idiot

There is also the assumption that programming is hard, so there
must be specialisation and a division of labour surrounding it. It
is amusing to consider that many proponents of this sort of “post-
open source” promote dubious and bad programming techniques.

The first instance we encountered was the introduction to the so-
called “Anti-Capitalist” Software License, which contains the para-
graph (emphasis ours):

7

ACSL recognizes that the copyleft requirement of open
source can be a drain on limited resources, can ex-
pose sensitive or secure information, and can put
software at risk of theft. The ACSL allows integra-
tion into closed source projects such as games, security
tools, artworks, and personal projects without requir-
ing those tools be made public. The availability of
source code is less important than the organiza-
tion of software labor.

The second emphasised phrase makes no sense: how can soft-
ware be stolen if you have allowed anyone to use it for whatever
purpose? We will get to the third eventually. But more relevant
now is the first phrase; there is the assumption that publishing
source code will somehow undermine the security of a system.

To put it politely, your system is completely broken if publishing
source code is a problem. Auguste Kerchoffs wrote six design prin-
ciples for secure ciphers, one of which being “The system should
not require secrecy, and it should not be a problem if it falls into
enemy hands.” Claude Shannon used the same principle, designing
under the assumption that “the enemy knows the system”. While
there is no encouragement to write insecure systems, the existence
of the license is apparently predicated on bad security design.

In the aftermath of A Parastatal Problem, one of the authors of
Parastat wrote that their usage of C is equivalent to using a differ-
ent model of car:

I wish tech people would handle technologies and pro-
gramming languages like Regular Car Reviews han-
dles cars — different cars suit different people, and ev-
ery car has the potential to be useful to/loved by some-
one.

We hope that the reader is wise enough to not consider hopping
into a model which is known to spontaneously explode.

8

working immediately. However, if the code is only available after
asking to enter the “community”, there could be a delay of many
hours, if not days. And, as attestable by many programmers, the
creative spirit is an impatient one; such association would require
far too much patience if one is burning to hack on an idea. A pre-
requisite for development of anything to be “sustainable” is to have
development at all, and it is hard to say that participants in such
associations would be very productive.

We also hope that “post-open source” people understand the
name means “open source” has already happened — is there even
a chance to compete with open source, if the barrier to reuse is sig-
nificantly higher with phony “communities”, which are all more or
less a fancy name for one’s income stream anyway?

What did we learn from the old free
software?

The kinds of associations formed by many users of the old free soft-
ware have many good properties. For example, association and dis-
sociation of individuals can be fast and can be done cleanly; when
we look at relations between individuals rather than large, static or-
ganisations, there are many more ways to make relations between
individuals, and so there is less of a reason to associate unless one
benefits from it.

Let’s look back at Stirner’s Critics for a bit:

If Hess attentively observed real life, to which he holds
so much, he will see hundreds of such egoistic unions,
some passing quickly, others lasting. Perhaps at this
very moment, some children have come together just
outside his window in a friendly game. If he looks at
them, he will see a playful egoistic union. Perhaps
Hess has a friend or a beloved; then he knows how

13

Whereas the barrier to association in the Fediverse is technical
– one can only be associated with one server at a time – the barrier
in post-open source is monetary, as it is expected that people will
pay to get into the “community”. This pay wall is supposed tomake
development “sustainable” by providing funding for the producers.

Once in the community, there are supposed to be democratic
votes on things, which is supposed to allow consumers to have
a say in development. However, with the combination of pay-
walling and that the original author was around first, it would
not be difficult for the original author to kick out any dissenters
quickly. As we had noted with proprietary software in Ethical soft-
ware is a sad joke, someone who disagrees with the way develop-
ment is done would find themselves completely unable to use the
software, let alone able to modify it themselves; is this really an
improvement over being told to “just fork it” and maintain a copy
yourself?

A programmer today has an interesting role of being a producer
and consumer of the same products; specifically, they tend to re-
use other people’s code while producing their own code. When
one goes to find code, they typically look up the concept they are
looking for, pick the best few options out of how many there are,
and then skim the code and documentation to see if it would be
useful to them.

Unbeknownst to the programmer, they are participating in a
form of association with very low overhead in many ways. The
matter of finding code can be done in ten minutes or so, and the
authors of that code do not have to advertise or run a business or
anything to find use; the openly available documentation and code
speak for themselves.

When collaboration is performed over the Internet, it is possible
for the individuals involved to be in very different time zones, and
thus any communication could require waiting some time, until
enough of the participants are awake. No communication is nec-
essary with free code reuse — one can take the code and continue

12

The author of the “Cooperative Source License” (note the middle
word is Source, not Software) finds writing good code to be a fool’s
errand:

One last thing about DRY and legacy code…
They’re just going to find a reason to hate your code
and rewrite it anyway so stop fussing about it.
They don’t give a shit about your abstractions, your
DRY, or your brilliant design.
“Beautiful Code” and any such similar sentiment is a
masturbatory fantasy for neckbeards. Don’t buy into
it.

It is hard to tell whether this quote provides real advice given
in good conscience, or if it is someone’s internal monologue while
they push themselves to barely finish something before a deadline.
The introduction to A Parastatal Problem argued that what was
presented was “the norms of the corporate world” and “the devel-
opment hell that one would expect from a lousy startup” — such
descriptions are no less applicable here.

It is also consistently unfotunate to see fellow radicals and
queers call everything that they do not like a product of “neck-
beards” or “techbros”, regardless of whether the reality is strikingly
different. We normally see this as a means to avoid investing
energy in people who are generally a waste of time or who are
arguing in bad faith. Nowwe see it being applied to evade different
ways of thinking and valid criticism, regardless of whether the
thought is in reality of a queer nature or origin.

What’s the deal?

But why make programming hard? Robert Strandh argues in
The psychology of learning that, in the context of learning,

9

some people are perfection-oriented, in that they search for
new techniques and find the process enjoyable; and others are
performance-oriented, in that they rather take productivism to
heart and want to achieve immediate performance at all costs. It is
reasonable that the perfection-oriented people would out-perform
the performance-oriented people by performing self-improvement,
so the latter find the need to “discredit [the former’s] knowledge”
in order to reduce the performance difference.

It is possible that a similar technique is used to keep post-open
source relevant in some ways: if programming was easier, and if it
was even enjoyable, there would be less of a need for a division of
labour, and so there would be no need for the more rigid forms of
organisation that its proponents promote (which we will discuss
later). By repeating the lie that programming is essentially hard,
people can be convinced that they need rigid forms of organisation
to get things done. The issue lies in the subjective and contextual
nature of what is considered “complex” or not.

One model we have heard of is that a task has some small “neces-
sary complexity” and a typically larger complexity induced by poor
tooling. But what complexity is “necessary” is only vaguely de-
fined, and is more or less a projection of how hard the programmer
thinks the task is. If the tooling improves, this projection changes,
and so there wasn’t really a notion of necessary complexity to start
with.

Instead, we prefer to consider a good tool as something which
makes complexity comprehensible and reasonable. For example,
we may see a system we need to study as something with com-
plex behaviour, or as the interaction of actors with much simpler
individual behaviours. The difference in “complexity” again is ex-
ponential. A good tool would allow the computer to handle the toil
of reasoning about the resulting blow-up of scale in the distributed
system we have invented, while the user specifies behaviour and
requirements in terms of the simpler actors involved.

10

A computer-free example of this subjectivity is presented in a
presentation by Alan Kay, wherein some primary school students
are given a fairly laborious task of cutting out paper shapes in or-
der to make larger and larger ones, and count how many smaller
shapes were used. The teacher explained that the purpose was to
“slow [the students] down so they’ll think” — the students even-
tually worked out the rate of change, or rather the derivative, of
the number of smaller shapes, and integrated it to find the actual
number of shapes used. When the students had this perspective,
the result they produced was “a second-order discrete differential
equation, derived by six-year olds.” Someone who did not watch
the demonstration, and only heard the conclusion, would think Kay
was telling a joke.

When equipped with poor tools for the problem, a problem ap-
pears much more complex than it needs to be. Such perceived com-
plexity presents many challenges: a post-open source commons is
unequipped to compete with any corporate and proprietary ven-
dors; and it forces people to associate in order to get anything done.
This coercion does not lead to pleasurable or productive associa-
tions.

Legalese or a liberatory program?

The proposed relations by post-open source advocates fetishise the
community in some way or another. We have already noted a simi-
lar issue in the FediversewithinCareful with that axe, Eugen; where
a server is supposed to be a community. This squares social circles,
so to speak, and turns free associations into discrete “communities”.
(While many people seem to have come to the same abstract con-
clusions, and advocate the same organisational strategies, we will
pick and discuss specifics from the so-called cooperative source de-
velopment process.)

11

