
The Anarchist Library
Anti-Copyright

Gnuxie Lulamoon and Hayley Patton
The Poverty of Post-Open Source

September 4, 2021

Retrieved on September 10, 2021 from https://applied-
langua.ge/posts/the-poverty-of-post-open-source.html

theanarchistlibrary.org

The Poverty of Post-Open
Source

Gnuxie Lulamoon and Hayley Patton

September 4, 2021

Contents

The user is always an idiot 5
The programmer better be made an idiot 7

What’s the deal? 10
Legalese or a liberatory program? 11
What did we learn from the old free software? . . . 13
What is egoist telekommunism? 16

3

sumer” things would find it more empowering to tweak their
software themself, rather than have to find the perfect devel-
oper who has exactly their interests in mind.

Our notion of egoism coincides nicely with telekommunist
ideas. For example, the telekommunist rightfully critiques
a concrete form, critiquing cooperatives as exploitive and
bureaucratic, and similarly the egoist critiques its general
shape, as an insular community wherein its participants
cannot fulfil themselves.

With such a focus on general principles, it is easy to see that
our prior writings attacked the same general ideas, specifically,
the necessity of a distinction between producer and consumer
(A Parastatal Problem, “Ethical software” and this article), that
computing must necessarily be hard (Terminal Boredom and
this article), and that rigid “communities” are a good represen-
tation of associations (CWTAE and this article).

Some people have figured out their own critiques of some
of these ideas, but still fall short and fool themselves with the
others; and some people only handle instances of these ideas
and not the ideas themselves, leading to an inconsistent view;
for example, one might correctly dismiss a concept of propri-
etary “cooperative” software, but still support the production
of more isolated communities on so-called “social” networks.

One is foolish to merely blame their problems on capitalism,
especially when their idea of “anarchism”, or “anti-capitalism”,
or whatever else they hold dearly, reproduces the same logic
and oppressive practices. There is no concrete “existential
threat” to peer production, there are merely false principles,
and any exhibition of such principles is no less terrifying than
any other. The notion of “post-open source” as we now know
of it, much like how we have said before, was dead on arrival.

17

The stereotype of a hacker cussing out Microsoft under every
breath is unfortunately the best manifestation of such edge; the
hacker perhaps has a vague idea of what corporates have done
to mess with the possibility of a software commons, but hasn’t
put a name to it, and is basically conditioned to never use their
observations to produce any anarchic concepts.

We can’t help but ponder what similarities exist between,
say, that hacker remaining cautious of the new Microsoft and
its “Microsoft <3 Linux” campaign, and the queer anarchist re-
minding their friends that the new gay politician is not the end
all in queer liberation. Of course, there could be nothing simi-
lar at all, but both groups have succeeded more than others in
preventing the corporate recuperation of their domains.

In order to avoid such edge and nearly political endeavours,
someone had the wise idea of inventing an “open source”
movement which reduced the emphasis on a software com-
mons. While the post-open source “movement” has added
in its own political endeavours, which appear radical at face
value, the anti-commons sentiment remains.

What is egoist telekommunism?

We consider egoist telekommunism to be two things:
It is an abstract free software, but groups like the Free Soft-

ware Foundation despise it, as we find commercial involvement
in the commons to be highly dubious. (Of course, the FSF is bad
at making decisions generally, such as when they opposed the
disallowment of using software in organisations which can’t
even follow local labour laws.)

It is also a synthesis of egotistical reasons towant things, and
telekommunist ways to get things. An individual whowants to
do “producer” things would appreciate being able to reuse pub-
lic resources, and that like-minded individuals provide their
own improvements; and an individual who wants to do “con-

16

One thingwhich has bothered us is that there seem to be sim-
ilar themes in prior writeups – in a way, it appears that writ-
ings like Terminal boredom, Ethical software is a sad joke, Care-
ful with that axe, Eugen and A Parastatal Problem approach
symptoms of the same cause. So it is natural, in a way, that we
want to tie the loose ends between them.

Much like the phantasm ofThe Far Left which scares the life
out of the average conservative, the idea of a unified “ethical
software” or “cooperative software” movement is completely
imaginary. In a prior article, we contrasted our own ethics
to “vulgar ethical software”. Noting that proponents of this
vulgarity often claim inspiration from an article entitled Post-
Open Source, we now consider vulgar ethical software to more
accurately be the lineage of this article; as they don’t even call
their ideas “ethical” to start with.

The only actual similarity between our theory, which we
half-jokingly call egoist telekommunism, and the lineage of
this post-open source is that the authors of the original texts of
telekommunism and post-open source both like Karl Marx. So,
the purpose of this article is to discuss what isn’t similar, and
why we think the telekommunist approach is much better.

The user is always an idiot

A general theme in post-open source is it assumes the same
dichotomies and distinctions between producer and consumer,
or between programmer and user, from a capitalist frame of
view. From the start of Post-Open Source:

but those freedoms don’t actually mean shit to the
average end user. only programmers care if they
have access to the source code, and most people
aren’t programmers. and i am a programmer, and
i don’t give a shit. the freedom to not think about

5

my operating system and just get work done over-
rules all of those for me, so i use windows.

There are a few misplaced assumptions made. The easiest
to refute is that all programmers are the same — if the author
doesn’t need the sources for something, neither should you.
While there are few people who, say, need source code for their
operating system, the small number of those people should not
suggest that the sources are in fact useless. A builder usually
would not find much use out of a sawmill, even if the job of
the builder is to “cut things into shape”. While such tools are
probably irrelevant to a builder and application programmer,
they would both be unable to do anything if someone didn’t
have the tools.

The most concerning assumption made is that most people
will never program, so access to source materials is unimpor-
tant. It is difficult these days to genuinely argue that people
should consider learning to program; in part because there is
higher demand for programmers, as well as engineers, scien-
tists, and generally all that sort of industry, as more industries
make use of automation and more software, and so all calls to
“learn to code” seem to come from industry demands.

But there are reasons to program which we would consider
purely selfish. One reason, as outlined in Terminal Boredom
and possibly originated in Goldberg and Kay’s Personal Dy-
namic Media, is that the computer allows for the creation of
methods of self-expression (i.e. meta-media). If we are to be-
lieve the idea of “linguistic relativity”, then meta-media makes
it possible to indulge in new modes of thought, which would
be very powerful.

If not, we can at least makemodes of thought that we already
know a lot easier to engage in. Where a computer connected to
some machinery can (partly or wholly) automate boring man-
ual labour, a computer by itself similarly automates thinking
labour. Minsky discusses the idea in Why programming is a

6

example, someone who draws would have an immediate idea
of whether the drawing program they made is any good or
not, but a programmer merely contracted to make a drawing
program might only check off a list of requirements, and the
programmer is at the whim of the people involved in making
requirements to produce relevant requirements. So someone
who “gets” their domain is going to have a better chance of
success than someone who doesn’t get it; a self-interested pro-
grammer is the most efficient at writing software they want to
write.

The empowerment of “consumers” also provides for better
quality software. Using our previous principle that a creative
spirit tends to be impatient, it may be better for one to fix defi-
ciencies in software, rather than file a request to have it fixed
by someone else. Again, if people wrote better code, the ef-
fort to modify it would also be reduced. The Fuzz Revisited pa-
per seems to support this hypothesis; the commercial Unixen
tended to be more bug-prone than the equivalent GNU and
Linux software, and the latter two could be fixed by anyone
who found a bug.

But a usual retort would be that the people who fix software
when they find bugs are still programmers, and not ordinary
people — this couldn’t work with anyone who isn’t a program-
mer. So do people tend to write good code? There may seem-
ingly be some effort involved in writing good code, but it is far
fromwasted. As Robert Strandh notes on “continuous improve-
ment”, careful application of efficiency-improving techniques
means “[he is] able to use more time eating, sleeping, and re-
laxing.” And the “great virtues of a programmer”, at least ac-
cording to Larry Wall and friends, of laziness, impatience and
hubris are merely part of an egoistic affair. So it is not unlikely
that, if someone had any egoistic motivation to program, they
could be a great programmer.

Another interesting property of the old free software was a
sort of edginess performed by the individuals associatedwith it.

15

If Hess attentively observed real life, to which
he holds so much, he will see hundreds of such
egoistic unions, some passing quickly, others last-
ing. Perhaps at this very moment, some children
have come together just outside his window in a
friendly game. If he looks at them, he will see a
playful egoistic union. Perhaps Hess has a friend
or a beloved; then he knows how one heart finds
another, as their two hearts unite egoistically
to delight (enjoy) each other, and how no one
“comes up short” in this. Perhaps he meets a few
good friends on the street and they ask him to
accompany them to a tavern for wine; does he
go along as a favor to them, or does he “unite”
with them because it promises pleasure? Should
they thank him heartily for the “sacrifice,” or do
they know that all together they form an “egoistic
union” for a little while?

With these properties inmind, it does not seem far out to call
the associations made “unions of egoists” or “affinity groups”.

Earlier we had promised to investigate the statement “The
availability of source code is less important than the organiza-
tion of software labor”, and we are in a position to do that now:
what we find out is that the published source materials are ef-
fectively the means of “organisation” in themselves. Any more
organisation is plainly unnecessary, and trying to separate the
two purposes of source materials, as they are used today, re-
sults in utterly absurd reasoning.

Is such (lack of) organisation “efficient”? Is it even “sustain-
able”? One may as well ask where the “communist countries”
are, or some boring crap like that. But we can give some gen-
eral ideas. Good programs generally are the product of dog-
fooding — the producer also consumes their own software, and
can directly judge it and figure out what needs to improve. For

14

good medium for expressing poorly understood and sloppily-
formulated ideas, mostly relating to symbolic AI problems, and
Iverson and Lamport attack mathematical proofs in Notation
as a Tool of Thought and How to Write a 21st Century Proof
respectively.

The “merely” mathematical domain of these articles does not
induce much confidence that computing is useful for the cre-
ative spirit, but it can be explained by the observation that, gen-
erally, computers have been either inaccessible due to their
scarcity, and have only been used for profitable purposes, or
most people who have access to computers have not consid-
ered programming them, and so haven’t written about more
interesting uses. The assumption that programming is boring
can only help itself: someone who believes this as an essential
trait can only ever create a culture of boring programming.

Instead, what the assumption results in is a reaction towards
a “human scale” of computing. But this ends up in a waste of
resources and time; a computer is used to assist with reason-
ing about things, which provides the user with a means for
more agency and subjectivity, but the computer is only used
for mundane tasks which the authors of the software believe
is only what the user can handle. In other words, despite the
assistance provided by the computer, this line of thinking ends
up assuming the user is always an idiot.

The programmer better be made an idiot

There is also the assumption that programming is hard, so there
must be specialisation and a division of labour surrounding it.
It is amusing to consider that many proponents of this sort
of “post-open source” promote dubious and bad programming
techniques.

7

The first instance we encountered was the introduction
to the so-called “Anti-Capitalist” Software License, which
contains the paragraph (emphasis ours):

ACSL recognizes that the copyleft requirement of
open source can be a drain on limited resources,
can expose sensitive or secure information,
and can put software at risk of theft. The ACSL
allows integration into closed source projects such
as games, security tools, artworks, and personal
projects without requiring those tools be made
public. The availability of source code is less
important than the organization of software
labor.

The second emphasised phrase makes no sense: how can
software be stolen if you have allowed anyone to use it for
whatever purpose? We will get to the third eventually. But
more relevant now is the first phrase; there is the assumption
that publishing source code will somehow undermine the se-
curity of a system.

To put it politely, your system is completely broken if pub-
lishing source code is a problem. Auguste Kerchoffs wrote six
design principles for secure ciphers, one of which being “The
system should not require secrecy, and it should not be a prob-
lem if it falls into enemy hands.” Claude Shannon used the
same principle, designing under the assumption that “the en-
emy knows the system”. While there is no encouragement to
write insecure systems, the existence of the license is appar-
ently predicated on bad security design.

In the aftermath of A Parastatal Problem, one of the authors
of Parastat wrote that their usage of C is equivalent to using a
different model of car:

I wish tech people would handle technologies and
programming languages like Regular Car Reviews

8

When collaboration is performed over the Internet, it is
possible for the individuals involved to be in very different
time zones, and thus any communication could require wait-
ing some time, until enough of the participants are awake. No
communication is necessary with free code reuse — one can
take the code and continue working immediately. However,
if the code is only available after asking to enter the “commu-
nity”, there could be a delay of many hours, if not days. And,
as attestable by many programmers, the creative spirit is an
impatient one; such association would require far too much
patience if one is burning to hack on an idea. A prerequisite
for development of anything to be “sustainable” is to have
development at all, and it is hard to say that participants in
such associations would be very productive.

We also hope that “post-open source” people understand the
name means “open source” has already happened — is there
even a chance to compete with open source, if the barrier to
reuse is significantly higher with phony “communities”, which
are all more or less a fancy name for one’s income stream any-
way?

What did we learn from the old free
software?

The kinds of associations formed by many users of the old free
software have many good properties. For example, association
and dissociation of individuals can be fast and can be done
cleanly; when we look at relations between individuals rather
than large, static organisations, there are many more ways to
make relations between individuals, and so there is less of a
reason to associate unless one benefits from it.

Let’s look back at Stirner’s Critics for a bit:

13

to have come to the same abstract conclusions, and advocate
the same organisational strategies, we will pick and discuss
specifics from the so-called cooperative source development
process.)

Whereas the barrier to association in the Fediverse is techni-
cal – one can only be associated with one server at a time – the
barrier in post-open source is monetary, as it is expected that
people will pay to get into the “community”. This pay wall
is supposed to make development “sustainable” by providing
funding for the producers.

Once in the community, there are supposed to be democratic
votes on things, which is supposed to allow consumers to have
a say in development. However, with the combination of pay-
walling and that the original author was around first, it would
not be difficult for the original author to kick out any dissenters
quickly. As we had noted with proprietary software in Ethical
software is a sad joke, someone who disagrees with the way
development is done would find themselves completely unable
to use the software, let alone able to modify it themselves; is
this really an improvement over being told to “just fork it” and
maintain a copy yourself?

A programmer today has an interesting role of being a pro-
ducer and consumer of the same products; specifically, they
tend to re-use other people’s code while producing their own
code. When one goes to find code, they typically look up the
concept they are looking for, pick the best few options out of
how many there are, and then skim the code and documenta-
tion to see if it would be useful to them.

Unbeknownst to the programmer, they are participating in a
form of association with very low overhead in many ways. The
matter of finding code can be done in tenminutes or so, and the
authors of that code do not have to advertise or run a business
or anything to find use; the openly available documentation
and code speak for themselves.

12

handles cars — different cars suit different people,
and every car has the potential to be useful to/
loved by someone.

We hope that the reader is wise enough to not consider hop-
ping into a model which is known to spontaneously explode.

The author of the “Cooperative Source License” (note the
middle word is Source, not Software) finds writing good code
to be a fool’s errand:

One last thing about DRY and legacy code…
They’re just going to find a reason to hate your
code and rewrite it anyway so stop fussing about
it.
They don’t give a shit about your abstractions,
your DRY, or your brilliant design.
“Beautiful Code” and any such similar sentiment is
a masturbatory fantasy for neckbeards. Don’t buy
into it.

It is hard to tell whether this quote provides real advice given
in good conscience, or if it is someone’s internal monologue
while they push themselves to barely finish something before a
deadline. The introduction to A Parastatal Problem argued that
what was presented was “the norms of the corporate world”
and “the development hell that one would expect from a lousy
startup” — such descriptions are no less applicable here.

It is also consistently unfotunate to see fellow radicals and
queers call everything that they do not like a product of “neck-
beards” or “techbros”, regardless of whether the reality is strik-
ingly different. We normally see this as a means to avoid in-
vesting energy in people who are generally a waste of time or
who are arguing in bad faith. Now we see it being applied to
evade different ways of thinking and valid criticism, regardless
of whether the thought is in reality of a queer nature or origin.

9

What’s the deal?

But why make programming hard? Robert Strandh argues in
The psychology of learning that, in the context of learning,
some people are perfection-oriented, in that they search for
new techniques and find the process enjoyable; and others are
performance-oriented, in that they rather take productivism to
heart and want to achieve immediate performance at all costs.
It is reasonable that the perfection-oriented people would out-
perform the performance-oriented people by performing self-
improvement, so the latter find the need to “discredit [the for-
mer’s] knowledge” in order to reduce the performance differ-
ence.

It is possible that a similar technique is used to keep post-
open source relevant in someways: if programmingwas easier,
and if it was even enjoyable, there would be less of a need for a
division of labour, and so there would be no need for the more
rigid forms of organisation that its proponents promote (which
we will discuss later). By repeating the lie that programming is
essentially hard, people can be convinced that they need rigid
forms of organisation to get things done. The issue lies in the
subjective and contextual nature of what is considered “com-
plex” or not.

One model we have heard of is that a task has some small
“necessary complexity” and a typically larger complexity in-
duced by poor tooling. But what complexity is “necessary” is
only vaguely defined, and is more or less a projection of how
hard the programmer thinks the task is. If the tooling improves,
this projection changes, and so there wasn’t really a notion of
necessary complexity to start with.

Instead, we prefer to consider a good tool as something
which makes complexity comprehensible and reasonable. For
example, we may see a system we need to study as something
with complex behaviour, or as the interaction of actors with
much simpler individual behaviours. The difference in “com-

10

plexity” again is exponential. A good tool would allow the
computer to handle the toil of reasoning about the resulting
blow-up of scale in the distributed system we have invented,
while the user specifies behaviour and requirements in terms
of the simpler actors involved.

A computer-free example of this subjectivity is presented
in a presentation by Alan Kay, wherein some primary school
students are given a fairly laborious task of cutting out paper
shapes in order to make larger and larger ones, and count how
many smaller shapes were used. The teacher explained that
the purpose was to “slow [the students] down so they’ll think”
— the students eventually worked out the rate of change, or
rather the derivative, of the number of smaller shapes, and in-
tegrated it to find the actual number of shapes used. When the
students had this perspective, the result they produced was “a
second-order discrete differential equation, derived by six-year
olds.” Someonewho did notwatch the demonstration, and only
heard the conclusion, would think Kay was telling a joke.

When equipped with poor tools for the problem, a prob-
lem appears much more complex than it needs to be. Such
perceived complexity presents many challenges: a post-open
source commons is unequipped to compete with any corpo-
rate and proprietary vendors; and it forces people to associate
in order to get anything done. This coercion does not lead to
pleasurable or productive associations.

Legalese or a liberatory program?

Theproposed relations by post-open source advocates fetishise
the community in some way or another. We have already
noted a similar issue in the Fediverse within Careful with that
axe, Eugen; where a server is supposed to be a community.
This squares social circles, so to speak, and turns free associa-
tions into discrete “communities”. (While many people seem

11

